Hello neighbor house beta 3

broken image

This means that when we multiply a a a and b b b together, the result is congruent to 1 1 1 modulo n n n. The user’s private key would be the pair ( n, b ) (n, b) ( n, b ), where b b b is the modular multiplicative inverse of a modulo n n n. The user’s public key would then be the pair ( n, a ) (n, a) ( n, a ), where aa is any integer not divisible by p p p or q q q. We might choose two large prime numbers, p p p and q q q, and then compute the product n = p q n = pq n = pq. For example, suppose we want to generate a public-key cryptography system for a user with the initials “ABC”. One way to generate these keys is to use prime numbers and Fermat’s Little Theorem. In a public-key cryptography system, each user has a pair of keys: a public key, which is widely known and can be used by anyone to encrypt a message intended for that user, and a private key, which is known only to the user and is used to decrypt messages that have been encrypted with the corresponding public key. One of the most common applications is in the generation of so-called “public-key” cryptography systems, which are used to securely transmit messages over the internet and other networks.

broken image
broken image

Fermat’s Little Theorem is used in cryptography in several ways.

broken image